

Assumption Free K-Means++ Seedings

Introduction

This package contains sklearn compatible python implementations of various K-Means seeding algorithms.

The package was inspired by the AFKMC^2 algorithm detailed in

Fast and Provably Good Seedings for k-Means [afkmc2]

Olivier Bachem, Mario Lucic, S. Hamed Hassani and Andreas Krause

In Neural Information Processing Systems (NIPS), 2016.

https://las.inf.ethz.ch/files/bachem16fast.pdf

The algorithm uses Monte Carlo Markov Chain to quickly find good seedings for KMeans and offers a runtime improvement over the common K-Means++ algorithm.

Usage

Using this package to get seedings for KMeans in sklearn is as simple as:

import afkmc2
X = np.array([[1, 2], [1, 4], [1, 0],
 [4, 2], [4, 4], [4, 0]])
seeds = afkmc2.afkmc2(X, 2)

from sklearn.custer import KMeans
model = KMeans(n_clusters=2, init=seeds).fit(X)
print model.cluster_centers_

Installation

Quickly install afkmc2 by running:

pip install afkmc2

Contribute

	Issue Tracker: https://github.com/adriangoe/afkmc2/issues

	Source Code: https://github.com/adriangoe/afkmc2

Support

You can reach out to me through https://adriangoe.me/#contact-us.

License

The project is licensed under the MIT License.

Reference

	Seeding Reference
	K-Means++

	K-Means Markov Chain Monte Carlo

	Assumption Free KMC^2

	Cached AFKMC^2

	References

	Seeding Demonstration
	Iris Dataset

	Runtime Comparison

Seeding Reference

View Code On Github [https://github.com/adriangoe/afkmc2/blob/master/afkmc2/afkmc2.py].

K-Means++

K-Means++ is the original seeding algorithm for K-Means as proposed by Arthur and Vassilvitskii in 2007 [kmpp].

It chooses one center uniformly, then computes distance of every datapoint to already chosen centers in order to use distance as weights when sampling next center. These steps are repeated until k centers are chosen.

Chosing good seedings speeds up convergence for K-Means, but extra time cost is occurred calculating all distances.

	
afkmc2.kmpp(X, k)

	
KMeans++ Seeding as described by Arthur and Vassilvitskii (2007)

Runtime O(nkd)

	Parameters:	
	X (np.array) – Datapoints. Shape: (n, d)

	k (int) – Number cluster centers.

	Returns:	Cluster centers for seeding. Shape: (k, d)

	Return type:	np.array

	Example:	seeds = afkmc2.kmpp(X, 3)

K-Means Markov Chain Monte Carlo

KMC^2 was proposed as an improvement over K-Means++ in 2016 [kmc2]. While K-Means++ requires k full passes over the dataset, KMC^2 replaces the D^2 sampling step with Markov Chain Monte Carlo sampling. Runtime is no longer tied to number of datapoints while new centers will be chosen far from current centers.

	
afkmc2.kmc2(X, k, m=200)

	
KMC^2 Seeding as described by Bachem, Lucic, Hassani and Krause (2016)

Runtime O(mk^2d)

	Parameters:	
	X (np.array) – Datapoints. Shape: (n, d)

	k (int) – Number cluster centers.

	m (int) – Length of Markov Chain. Default 200

	Returns:	Cluster centers for seeding. Shape: (k, d)

	Return type:	np.array

	Example:	seeds = afkmc2.kmc2(X, 3)

Assumption Free KMC^2

AFKMC^2 is an improvement proposed by the same authors [afkmc2]. While KMC^2 requires assumptions about the data generating distribution (in our implementation uniformity), this algorithm works without such assumptions. It the true D^2-sampling distribution with regards to the first center c_1 as a proposal distribution that can approximate nonuniform distributions.

This means an added runtime cost of O(nd) to calculate the initial distribution, but performance improvements for nonuniform samples.

	
afkmc2.afkmc2(X, k, m=200)

	
AFKMC^2 Seeding as described by Bachem, Lucic, Hassani and Krause (2016)

Runtime O(nd + mk^2d)

	Parameters:	
	X (np.array) – Datapoints. Shape: (n, d)

	k (int) – Number cluster centers.

	m (int) – Length of Markov Chain. Default 200

	Returns:	Cluster centers for seeding. Shape: (k, d)

	Return type:	np.array

	Example:	seeds = afkmc2.afkmc2(X, 3)

Cached AFKMC^2

The author of this package proposed this slight runtime improvement for AFKMC^2 (it could also be applied to KMC^2). Since the first O(nd) pass already calculates all distances between X and c_1 we can at minimum save ourselves k*m distance calculations by storing these results to be reused in the Markov Chain. This comes with an additional space cost of O(nk).

The savings are highest for small datasets but can yield significant runtime improvement for very large/high-dimensional ones as well.

	
afkmc2.afkmc2_c(X, k, m=200)

	
Cached AFKMC^2 Seeding based on AFKMC

as described by Bachem, Lucic, Hassani and Krause (2016)

Caching addition to prevent duplicate work for small datasets

Additional space cost during execution O(nk)

Runtime O(nd + mk^2d)

	Parameters:	
	X (np.array) – Datapoints. Shape: (n, d)

	k (int) – Number cluster centers.

	m (int) – Length of Markov Chain. Default 200

	Returns:	Cluster centers for seeding. Shape: (k, d)

	Return type:	np.array

	Example:	seeds = afkmc2.afkmc2_c(X, 3)

References

	[kmpp]	Arthur, D., & Vassilvitskii, S. (2007, January). k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (pp. 1027-1035). Society for Industrial and Applied Mathematics.

	[kmc2]	Bachem, O., Lucic, M., Hassani, S. H., & Krause, A. (2016, February). Approximate K-Means++ in Sublinear Time. In AAAI (pp. 1459-1467).

	[afkmc2]	Bachem, O., Lucic, M., Hassani, H., & Krause, A. (2016). Fast and Provably Good Seedings for k-Means. In Advances in Neural Information Processing Systems (pp. 55-63).

Seeding Demonstration

Iris Dataset

An easy way to see the quality of the seedings chosen by each of these algorithms is visualizing the seed choices on top of the frequently used “Iris” dataset in sklearn.

[image: Cluster Centers for KMPP]
[image: Cluster Centers for KMC2]
[image: Cluster Centers for AFKMC2]
[image: Cluster Centers for AFKMC2C]
We easily see that each algorithm finds reasonable choices for seeds that barely differ from each other. These seedings allow KMeans to categorize the data well, we can see that by comparing tot he ground truth shown below. Clusters with random seedings are shown below as well, we see that KMeans still converges at a good solution since this is an easy problem, but the number of iterations needed to get there was higher.

[image: Clusters with AFKMC2 Seedings]
[image: Clusters with random Seedings]
We expect KM++ and AFKMC2 to have the highest quality seedings while KMC2 might in some cases suffer from a poor choice of assumed distribution. The main difference between KM++ and AFKMC2 will be visible when looking at runtime.

Runtime Comparison

The time complexity of using one of the KMC^2 approaches over KM++ clearly shows for larger datasets.

Average Runtime for 50 passes, 40 dimensions and 3 centers

	Size
	KM++
	KMC2
	AFKMC2
	AFKMC2C

	200
	.0031
	.0054
	.0133
	.0107

	1000
	.014
	.0053
	.0204
	.01899

	5000
	.07838
	.00556
	.05683
	.058771

	20000
	.29286
	.00529
	.17766
	.188594

	100000
	.59260
	.0057
	.87167
	.929336

While on a set with 200 observations and 40 dimensions KM++ outperforms the others, the MCMC approaches bring large time savings for datasets with 2000+ observations. We can still feel the one pass over n in the AF approaches, but if the number of centers increases KM++ would feel a strong increase in runtime while AFKMC2 is barely affected as shown below.

	Size
	K
	Dimensions
	KM++
	KMC2
	AFKMC2
	AFKMC2C

	100000
	3
	40
	.59260
	.0057
	.87167
	.929336

	100000
	6
	40
	6.9294
	.01998
	1.4054
	1.47619

	100000
	3
	80
	1.5638
	.00559
	.86605
	.924057

	500
	20
	80
	.43924
	.20874
	.28856
	.173561

We notice that the proposed addition of caching reduces performances in situations with numbers of observations. This is due to the fact that we save between (1-k)*m and .5*(1-k)^2*m passes over the data. Since MCMC does not need to increase m for large datasets we will only save slightly above 1200 calculations for the case with 6 centers and 100000 points but still have to do at least 101000 calculations. Only the last example shows a case in which the time saving due to caching is significant and clearly outperforms all other cases since in a dataset with 500 points we are more likely to have duplicates among our 200 points in the Markov Chain.

Demo Code on GitHub [https://github.com/adriangoe/afkmc2/blob/master/afkmc2/demo.py].

Index

 A
 | K

A

 	
 	afkmc2() (in module afkmc2)

 	
 	afkmc2_c() (in module afkmc2)

K

 	
 	kmc2() (in module afkmc2)

 	
 	kmpp() (in module afkmc2)

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_images/iris.png
Ground Truth

fels,

Virgiﬁica

o P

_images/kmc2_iris.png
Clusters e

_images/kmpp_iris.png
Clusters after KM++ Seeding

o P

_images/random.png
Clusters

_images/afkmc2_iris.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Assumption Free K-Means++ Seedings

 		Seeding Reference

 		K-Means++

 		K-Means Markov Chain Monte Carlo

 		Assumption Free KMC^2

 		Cached AFKMC^2

 		References

 		Seeding Demonstration

 		Iris Dataset

 		Runtime Comparison

_static/up-pressed.png

_images/afkmc2c_iris.png

_static/down.png

_static/up.png

